New approaches for bottom-up assembly of tobacco mosaic virus-derived nucleoprotein tubes on defined patterns on silica- and polymer-based substrates.
نویسندگان
چکیده
The capability of some natural molecular building blocks to self-organize into defined supramolecular architectures is a versatile tool for nanotechnological applications. Their site-selective integration into a technical context, however, still poses a major challenge. RNA-directed self-assembly of tobacco mosaic virus-derived coat protein on immobilized RNA scaffolds presents a possibility to grow nucleoprotein nanotubes in place. Two new methods for their site-selective, bottom-up assembly are introduced. For this purpose, isothiocyanate alkoxysilane was used to activate oxidic surfaces for the covalent immobilization of DNA oligomers, which served as linkers for assembly-directing RNA. Patterned silanization of surfaces was achieved (1) on oxidic surfaces via dip-pen nanolithography and (2) on polymer surfaces (poly(dimethylsiloxane)) via selective oxidization by UV-light irradiation in air. Atomic force microscopy and X-ray photoelectron spectroscopy were used to characterize the surfaces. It is shown for the first time that the combination of the mentioned structuring methods and the isothiocyanate-based chemistry is appropriate (1) for the site-selective immobilization of nucleic acids and, thus, (2) for the formation of viral nanoparticles by bottom-up self-assembly after adding the corresponding coat proteins.
منابع مشابه
Study on Genetic Diversity of Terminal Fragment Sequence of Isolated Persian Tobacco Mosaic Virus
Tobacco mosaic virus (TMV) is one of the devastating plant viruses in the world that infects more than 200 plant species. Movement protein plays a supportive role in the movement of other plant viruses, and viral coat protein is highly expressed in infected plants and affects replication and movements of TMV. In order to investigate genetic variation in the terminal fragment sequence in Iranian...
متن کاملBiofabrication methods for the patterned assembly and synthesis of viral nanotemplates.
This paper reports on novel methodologies for the patterning and templated synthesis of virus-structured nanomaterials in two- and three-dimensional microfabricated architectures using the Tobacco mosaic virus (TMV). The TMV is a high aspect ratio biological molecule which can be engineered to include amino acids with enhanced binding properties. These modifications facilitate self-assembly of ...
متن کاملMicrobatteries Using the Tobacco Mosaic Virus
Title of Document: NANOSTRUCTURED NICKEL-ZINC MICROBATTERIES USING THE TOBACCO MOSAIC VIRUS Konstantinos Gerasopoulos, Master of Science, 2008 Directed By: Professor Reza Ghodssi, Department of Electrical and Computer Engineering The development of nanostructured nickel electrodes using the Tobacco mosaic virus (TMV) for microbattery applications is presented in this Thesis. The TMV is a high a...
متن کاملVibrational Modes of Nano-Template Viruses
Viruses have recently attracted attention as biological templates for assembly of nanostructures and nanoelectronic circuits. They can be coated with metals, silica or semiconductor materials and form end-to-end nanorod assemblies. Such viruses as tobacco mosaic virus (TMV) and M13 bacteriophage have appropriate cylindrical shape and particularly suitable dimensions: M13 is 860 nm long and 6.5 ...
متن کاملNovel roles for well-known players: from tobacco mosaic virus pests to enzymatically active assemblies
The rod-shaped nanoparticles of the widespread plant pathogen tobacco mosaic virus (TMV) have been a matter of intense debates and cutting-edge research for more than a hundred years. During the late 19th century, their behavior in filtration tests applied to the agent causing the 'plant mosaic disease' eventually led to the discrimination of viruses from bacteria. Thereafter, they promoted the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Langmuir : the ACS journal of surfaces and colloids
دوره 28 42 شماره
صفحات -
تاریخ انتشار 2012